.
VTl [

Instruments

VTEXSWITCH
DRIVER

PROGRAMMER’S MANUAL

P/N: 82-0117-000
Released February 18th, 2014

VTI Instruments Corp.

2031 Main Street
Irvine, CA 92614-6509
(949) 955-1894

VTI Instruments Corp.

TABLE OF CONTENTS
INTRODUCTION

L =TI = 10 N 1 =1 2
PROGRAMMING EXAMPLES. .. .uttttttieeiiiittreetee et isiistbeeeeesssesiatbasesesessiabsssesesesssabbssseesesssassbsrasssesssasstresesesssasttrasesesssains 4
(@Y 1) To7=\ £ o P 5
WVBITANTY ..ot e bbbkt h et E e R AR b e R e s e e b et e e R e Rt R R e e e e R Rt bt e e e 5
LimiItation OF WaITANTYc.oiiiieiiiiie bbb bbbttt ettt 5
RESTHCIEA RIGNTS LEGENT.c. ittt bbbtttk b et 5
SUPPORT RESOURCES ...uvvtiiiiiiiiiittties s e e s seiibbbttt s e s st e saabbattseessssabbasasesesssaab b abeeesesssasb bbb aesseessa bbb bebssesssesabbbaaseesesssasbbaaaeesas 6
=T [0 N OO 7
1R {0]n 0T ox 1 Lo] N O TORT 7
2 FE 103 (o | {0113 To USRS 7
(] 1015 LSS 7
T T Tl @0 =T o] SRS 8
ADDRESSING INSTRUMENTS & COMPONENTS. ...vvieiittieeietteeeeiteeeesestesessssesssssesssssssesesasessesssssesssssessssssessssssssssssssereas 9
g1 (oo [Tt o] o 9
o Fo L (o g T AT M AT (04 T=T 0 E T 9
(O g =T 111 3SR 9
REIAYS BNG COIIS ...ttt bbb bbb bbb bbbtk bbbt e 9
Parallel TTL/IO Ports (EX7000 ONIY) ...oviiiiiiiiieisisieise ettt ettt bbbt be et ssenenne 9
INTTIALIZATION L1ttiiiieiiieittttiit e e e s seitbb et e s e e s s e sbb b e st s eeeessabbabeeeseesssbbbbeesseessassbebeeeseessesabb bbb s eeeesssasbbaaaeesesssasbbabesesesssasbrrbes 10
(O] 01 To] g1 4110 [OOSR USRI 10
(DL @8l [a1 0 g 10X (o] o ISR 11
] [0 3R 11
MUIIPIE IMIAINTTAIMES ...ttt e b e et e e s e e st e e e st e s besbeeteeReesbeseesbestesnearaeneeneenrens 12
a0 EAATo TU T =] A1 o - SR 14
INSTRUMENT SPECIFIC INTERFAGCEeiiiitvee e s itteeeeeteeeesttee e s sateeesstaessssatesessabeeesasbeseaasaassssssaeeessbesesassessesrenessasrenenns 16
L1 (0o [Tt o] o 16
Repeated CapabilitIESciiiiiiiie bbbt bbb s 16
(O g F= T 0 1] TR 16
(1S (O 1 {01 =T a1 1] E TR 16
T TN L0 2] o] G TR 16
User-defined Relay CONFIGUIALIONScoiiiiiii ittt ettt b e bbb nee 16
e g P IO a1 a=To1 1 o LT 17
L@ L0 (0] 1] (T £ 18
ol [T Lo [T £ SRR 18
o R TV L)] (U0 (<IN 1) £ 18
Relay SPECITIC INTEITACES .. .cuveviiiie et e e e e e st e be s resteene e st e seestestesneereeneeneeneens 19
(08 01T I L I £ USROS 19
OPEIN REIAYS ...ttt bbb b bbb bbb bbbtk b bbb bt r e 19
GEE REIAY STALE ... ittt bbb bbb bbb bbbttt 19
VENTY REIAY STALEcveiteeece bbbtttk bbbt b et b 20
FUNCLION CAIL LOGGING -ttt sttt sttt e et bbb e st e st e b et e s bt eb e e beebe e s e e e en b e neesbenbesbeabeeneaneennens 21
(@] oLTo [T I [OOSR USRI 21
(O (o 1T o]0 I |1 SO SOTRT U U RTUR USRI 21
EXT7000 SPECIFIC INTERFACE ..11tiiiiiiiiittttttt e e et sitbtt et s e e st s et bbb e e s s e et s abab b e e s s e e s s e bbb b aaeseessa bbb b e e s seesaesabbbaeasesesesabbbaeaeeeenases 22
QL (oo 01 o] TR 22
REPEAtEd CaPADIIITIESecieieiiie ettt st e b e e te e e e st e s e e st e s besbeeteeneeseeseesbesresaeeraeneeneenrens 22
L= 1| 11 1 L 22
L@ U o101 g o] [=T 1Y o S 22
(D7 | - O 22

2 VTEX Switch Driver Programmer’s Manual

www.vtiinstruments.com

[T (O =T =1 (11 O U 23

RN (=] LU= (o] TSR 24

TS 1] T [OOSR 24

[T (O /AN 1 1A LU L (0] £ T TR 25
=0 10 N IO 26
APPLICATION EXAMPLES ... utttiiiiiii ittt ettt e e s et e e e e e e e sb b b e b e e e e e e s st b bbb e e e s e e s sa bbb b e e e seesaabbbbaeeseessesabbbaeeeeseenes 26
QL (oo 0ot (o] ST 26

L (U] I sV 1] o] OSSR 26

L L T T] £ 33

VTEX Switch Driver Programmer’s Manual 3

VTI Instruments Corp.

PROGRAMMING EXAMPLES

Connecting to slots 1, 2, and 3 uSing dash SEPAratioN.............cccviiieiiiiiiieie et n e e 12
Connecting to slots 1, 2, and 3 USING COMMA SEPATALIONeiviriiiiriiiieie ettt st st sb bbb e e 12
Connect to slots and VErify MOTET LYPE ..ottt sbe e 12
Simulate a system With two SWItCh MOTUIEScviieieiccc e neens 13
Implicitly request all containing SWItCH CAIUSccciviiiieiiic et sr e re e sreeas 13
Connect to three slots with the same MOAel tYPE..........oe i 13
Connect to multiple cards on multiple MaINTIAMES ..ot 13
Invalid — First slot number is greater than the second SIOt NUMDBETcveieiiiii i 13
Invalid — Module not specified in SIMUIATION MOTEccociiiiiciiecc e e e 14
Invalid — Slot numbers not specified with module ID in simulation MOdE............cccevveiieiiie s 14
Control slots 1, 2, and 3 using Individual Relay MOGE............cccooiiiiiiiiiie e 15
Using IndividualRelayMode during @ SIMUIALION..........cooiiiiiiiiiicee e 15
Invalid — True or False not indicated for Individual Relay MOdE...........c.coveveiiiiiie i 15
(I (O (O T g T=] LU o[- PSSR 16
SEIIAINUMDET USAGR.... ettt b e bbbt h et e b e ke eb e e b e e Rt e bt et et e ebesbesbeebeebe e s enbeneen 16
SEUING USAOE ...ttt ettt b et b bbb e bt bt e e b e bt ek b E e b e Rt e e b e bt e e bt b e bt bt e bt bt e bt b nrerean 17
EXLErNAICONNECION USAJE ...e.vviveeeieeieiiiesiestese et ettt ste st e s e e s e e e e e stestesseese e s e e s e aeseeabesseeneeteeneeneeseenbeseesneareaneeneeneens 17
(@0 (0] 0 T=] CoT R Uy o[- TSSO 18
Defining a path-18VEl @XCIUAR TIST.........oouiiieee e bbbt st b e bbb e e 18
Deleting a path-1eVel XCIUR TISTc.ooiiiiiiiii ettt bbb 19
ClOSEREIAYS USAQE ... vvveireerieeesiesiestesesteeteetestestestestestesteaseeseesseseestesbesbeaseaseensenseseeaeseeaeeaseaneesee e enseseenbeneeanearaeneenenneens 19
OPENREIAYS USAQE. ... cuveuviieieitesiectee e iteie st st e s testestasteetae e esteseestestesbeabeaseassesee st e besbesbesteabeaseeasesee e enteseesbestesaeeseenseneenrens 19
CTS] Y L (S U LT Vo OSSP URTORPRUUUN 19
VEITYREIAYSIAIE USAJEo.viveitiieeiietiiteet ettt b bbb bbbt bbbt bbbt b bbbttt 20
(@] oL oL T L= 7 o - S ORPSRS 21
08 (o 1T= T T (ol Uy o[- SOOI 21
ParallellOs reference pointer INITAHZATIONooiiiiiii e et ee 22
OULPULENADIEMASK & DAA USAGE.... e e cveterietirieiiete sttt ettt et sb ettt b ettt b ettt b et b e bbb e bt ab e e et e b e e et e abeneerea 23
(TS 0] =T [1 L@ TS U7 o -SSP 23
ALENUALOT INTHATIZATION ..ottt bbb b st bbbt et b e st et b e st et b e st e 24
STe] 1o O LT To [OSSO URURPRUUTRN 24
LiSTOTATIENUALOIS USAJEe.viueititeiietiit ettt ettt bbbt bbb bbb bbb bbb etk b et e bbbt 25
Y O T Ly o =SSR 26
Y oy a I e 1 o] USSR 29
Crat LINUX EXAIMPIE ..ottt sttt bbbkt e e e b ekt e bt b e he e bt e Rt eh e e b e et et e nbesb e st e ebe et e ennaneennen 31

4 VTEX Switch Driver Programmer’s Manual

www.vtiinstruments.com

CERTIFICATION

VTI Instruments Corp. (VTI) certifies that this product met its published specifications at the time of shipment from
the factory.

WARRANTY

The product referred to herein is warranted against defects in material and workmanship for a period of one year
from the receipt date of the product at customer’s facility. The sole and exclusive remedy for breach of any warranty
concerning these goods shall be repair or replacement of defective parts, or a refund of the purchase price, to be
determined at the option of VTI.

VTI warrants that its software and firmware designated by VTI for use with a product will execute its programming
when properly installed on that product. VTI does not however warrant that the operation of the product, or
software, or firmware will be uninterrupted or error free.

LIMITATION OF WARRANTY

The warranty shall not apply to defects resulting from improper or inadequate maintenance by the buyer, buyer-
supplied products or interfacing, unauthorized modification or misuse, operation outside the environmental
specifications for the product, or improper site preparation or maintenance.

VTI Instruments Corp. shall not be liable for injury to property other than the goods themselves. Other than the
limited warranty stated above, VTI Instruments Corp. makes no other warranties, express or implied, with respect to
the quality of product beyond the description of the goods on the face of the contract. VTI specifically disclaims the
implied warranties of merchantability and fitness for a particular purpose.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subdivision (b)(3)(ii) of the
Rights in Technical Data and Computer Software clause in DFARS 252.227-7013.

VTI Instruments Corp.
2031 Main Street
Irvine, CA 92614-6509 U.S.A.

VTEX Switch Driver Programmer’s Manual 5

VTI Instruments Corp.

SUPPORT RESOURCES

Support resources for this product are available on the Internet and at VTI Instruments customer
support centers.

VTI Instruments

World Headquarters ...
VTI Instruments Corp. ..

2031 Main Street VT I .

Irvine, CA 92614-6509

Phone: (949) 955-1694 Instruments

Fax: (949) 955-3041

VTI Instruments
Cleveland Instrument Division

5425 Warner Road
Suite 13
Valley View, OH 44125

Phone: (216) 447-8950
Fax: (216) 447-8951

VTI Instruments
Lake Stevens Instrument Division

3216 Wetmore Avenue, Suite 1
Everett, WA 98201

Phone: (949) 955-1894
Fax: (949) 955-3041

VTI Instruments, Pvt. Ltd.
Bangalore Instrument Division

75/76, Millers Road

Bangalore — 560 052
India

Phone: +91 80 4040 7900
Phone: +91 80 4162 0200
Fax: +91 80 4170 0200

Technical Support
Phone: (949) 955-1894

Fax: (949) 955-3041
E-mail: support@vtiinstruments.com

Visit http://www.vtiinstruments.com for worldwide support sites and service plan information.

VTEX Switch Driver Programmer’s Manual

www.vtiinstruments.com

SECTION 1

INTRODUCTION

BACKGROUND

GLOSSARY

The intent of the programmer’s manual is to describe the 1VI-compliant VTEX switch driver and
to introduce its concepts, structure, and capabilities to software and test application engineers by
providing examples of recommended code usage. The reader is expected to be familiar with
instrumentation drivers, in particular IVI-COM and IVI-C specifications; COM and
C programming terminology; and switch instrumentation concepts.. Understanding VI driver
specifications will significantly help the reader follow the VTEX switch driver’s design and the
code examples provided. For more information regarding the required and optional parts of IVI-
compliant switch drivers as well as I\VI driver capabilities and operation, please refer to 1VI-4.6:
IviSwtch Class Specification and 1VI-3.2, Inherent Capabilities Specification which are available

on the IVl Foundation website.

This guide provides instruction for programming both the EX1200, SMX, and the EX7000.

Throughout this document, the following terms will be used:

Attenuator a device that reduces an input signal’s amplitude while maintaining most
of its other characteristics.

Controller a single-board computer, hosting the CPU, RAM, Flash, real time
software (i.e. firmware) and other devices that enable its operation as an
intelligent, LXI platform.

DCF acronym for Device Configuration File; a collection of information
describing a specific device (e.g. a plug in card) or an entire system (e.g.
an EX7000).

Drive Line a physical line used to drive one coil in a switch/relay.

EX-based VTI Instruments, Inc’s modular instruments developed for the EX
platforms. Synonymously used with “Next Generation System” and
“system”.

EX7000 an LXI-based radio frequency (RF) switch system which is part of
VTI Instruments’ Next Generation line of products.

(V]| acronym for Interchangeable Virtual Instruments; a collection of

Latching Relay

specifications that create a common programming model for several
classes of instruments.

a switch that remains in the last commanded position, by magnetic
force, until it receives a reset signal.

Module any instrument installed in an EX system slot.
Module ID a string identifying the module; “ex1200-3048”, for example.
NISE acronym for National Instruments Switch Executive; a client software

package that can aggregate multiple switch modules and make them
behave as one integrated system provided they comply fully with the
IVI Switch specification.

VTEX Switch Driver Programmer’s Manual 7

VTI Instruments Corp.

RDB an acronym for Relay Driver Board; hardware that interfaces between

the controller and the actual microwave switches on an EX7000.

SFP acronym for Soft Front Panel; an application running on a host

computer (either a Windows or Linux PC) that provides an graphic user
interface (GUI) to monitor and control the instrument.

Soft Parallel Port a named, user-defined collection of consecutive relay drive lines that are

accessed as one unit i.e. by writing / reading arbitrary numerical values
to / from them.

SPXT acronym for Single Pole x Throw relay; a device connecting an input

(the pole) to one of several outputs (the x throws). Each such connection
is achieved by controlling a separate coil, one per throw.

User Defined Port a synonym for Soft Parallel Port.
Virtual Instrument a collection of plug-in modules and other system resources controlled

BAsic CONCEPTS

1)

2)

3)

4)

5)

together by a client application session. The EX systems support
concurrent and independent control of up to four virtual instruments on
the same physical platform.

The driver complies with the 1VISwitch specification. On Windows platforms, it supports
both IVI-COM and IVI-C interfaces. On Linux platforms, it supports a C++ programmatic
interface that is nearly identical to the COM interface.

The VI Switch specification treats every switch module as a collection of channels which can
be connected or disconnected by opening/closing relays. It does not provide for direct control
of the relays themselves. The VTEX switch driver recognizes that customers may prefer this
programming paradigm versus the path-level switching included in IVI Switch. To provide
the maximum flexibility to end users, the driver provides both control mechanisms: path-level
switching and individual relay control. These two modes are mutually exclusive due to the
conflicting requirements they create for the underlying driver logic. The mode is selected via
the Initialize call. This mode is then maintained until the program calls the Close method.
Note that the test program can immediately Initialize another session and use the other mode,
if needed.

The VTEX switch driver was designed to work equally well with all types of switch modules
made or envisioned by VTI. This includes plug-in switch cards for the EX1200 series, SMX
series and the EX7000 platforms.

An EX7000 platform provides a generic collection of relay drive lines and reset lines intended
to drive RF switch coils. While some client applications may prefer to control coils
individually, others may wish to combine coils in order to control different device types. The
VTEX switch driver provides this flexibility by supporting three programmatic concepts:

i. Each drive line can be turned on or off individually.

ii. A sequence of drive lines can be combined and used collectively as a “user-defined
port,” also known as “soft parallel 10 port”. Once defined, the application program can
simply write arbitrary numerical values to such a port, where each ‘1’ bit turns the
corresponding line on, and each ‘0’ bit turns it off. The program can also read the
port’s value which are the inputs provided by external devices connected to the read
back lines. Using this feature, the customer can connect any arbitrary device to the
system, control its operation, and monitor its status.

iii. Attenuators — these are implemented as simple user-defined [parallel] ports which
accept a short list of values (bit patterns) to achieve specific attenuations.

The VI specification allows for extensions. The VTEX switch driver includes
VTI Instruments Corp. value-added methods and properties in the InstrumentSpecific
interface. See the Instrument Specific Interface section for more details.

VTEX Switch Driver Programmer’s Manual

www.vtiinstruments.com

ADDRESSING INSTRUMENTS & COMPONENTS

INTRODUCTION

Addressing instruments and components is similar for the EX1200, SMX, and the EX7000s series
mainframes. Both will be addressed in the following section.

PLATFORMS AND INSTRUMENTS

A Next Generation platform has one or more individual slots, numbered from 1 to n, with the
exception of the EX7000, which is treated as a single-slot platform. References to channels and
relays typically need to be prefixed by the slot number followed by an exclamation point (eg. for
CH1_1 onslot 1 the notation would be “1!CH1_17).

The only exception is when a single slot is initialized. This may occur when a mainframe contains
only one plug-in or, as is the case for the EX7000, when the platform has only one slot. In this
case, the slot number can be omitted.

CHANNELS

For the EX1200, SMX, and factory configured EX7000s, channel names are predefined. The
channel names are visible for both platforms via the online webpage. These names are also
available in the user’s manuals of the EX1200 and SMX series switch cards. For multiplexers and
matrices, conventions also exist for creating 2- and 4-wire channel names as well. For more
information on 2- and 4-wire channel names, refer to the EX1200 Switch Card User’s
Manual/SMX Switch Card User’s Manual.

It should be noted for the EX7000 that the user has the ability configure the mainframe using the
DCF configurator. When this is done, channel names are defined by the user.

RELAYS AND COILS

On an EX1200 or SMX switch card, each relay has a unique, predefined name. For plug-in switch
cards, the names are provided in a “K<number>" format, such as K1, K2, K1015, etc. The card’s
logical diagram indicates the relays” K-number and provides channel connectivity information.

On an EX7000, each relay driver board (RDB) is a collection of 72 relay/coil drive lines plus
12 high-current reset lines. The names of the relay drive and reset lines are
“K<rdb#>_<linenumber>" and “R<rdb>_<linenumber>", respectively. For example,

e The predefined names for the first RDB are K1_1 through K1_72 and R1_1to R1_12.
e The predefined names for the second RDB are K2_1to K2_72 and R2_1to R2_12.
e The predefined names for the eighth RDB are K8 1 to K8 72 and R8_1to R8 12.

PARALLEL TTL/IO PoRTs (EX7000 ONLY)

Each RDB on the EX7000 includes a 32-bit, parallel TTL port. Their predefined names are
“TTL<rdb#>". For example, TTL1 to TTL8 denote the ports on RDB 1 to RDB 8 respectively.

VTEX Switch Driver Programmer’s Manual 9

VTI Instruments Corp.

INITIALIZATION

The resource string of the VI Initialize method identifies all EX platforms by their IP address. For
an overview of the standard options available to VI drivers, a description of resource strings and
the Initialize method’s syntax, please refer to the 1VI Foundation’s 1VI-3.2, Inherent Capabilities
Specification. The VTEX switch driver provides additional options, as part of the “DriverSetup”
string. For the code examples in this document, the application program (if written in C++/COM)
needs to instantiate a copy of the driver, using the following syntax:

C++/COM:

IVTEXSwitchPtr driver(__uuidof(VTEXSwitch));
Once the driver is instantiated, the user can initialize a session with one or more mainframes by
using the Initialize method. A simple example follows:

C++/COM:

driver->Initialize ("TCPIP::10.1.0.87::INSTR", querylD, reset, "Simulate=TRUE");

In this example, “TCPIP::10.1.0.87::INSTR” identifies the mainframe on the network and is
referred to as the resource string. The “Reset” parameter stops any scan that may be in progress
and brings all relays to a known state. The “QuerylD” parameter, although part of the standard VI
interface, is not used by any EX platform. The “Simulate=TRUE” statement specifies additional
initialization options, including standard IVI options, such as “Simulate”, as well as instrument
specific options specified by the “DriverSetup” option. Options that can be specified in the
“DriverSetup” include “Slots” and “IndividualRelayMode”, which are discussed below.

Option Strings

The VTEX drivers provide option strings that can be used when Initializing an instrument. The
option string values exist to change the behavior of the driver. The following options strings are
available on VTI IVI drivers:

e Simulate: Allows the user to run a program without commanding switch card or instruments.
This option is useful as a debugging tool.

e Cache: Per the VI specification, this option “specifies whether or not to cache the value of
attributes.” Caching allows IV drivers to maintain certain instrument settings to avoid
sending redundant commands. The standard allows for certain values to be cached always or
never. In VTI IVI-drivers, all values used are of one of these types. As such, any values
entered have no effect.

e QuerylnstrumentStatus: Queries the instrument for errors after each call is made. As
implemented in the VTI IVI drivers, instruments status is always queried regardless of the
value of this property.

e DriverSetup: Must be last, and contains the following properties:

o IndividualRelayMode: This option is applicable to the VTEXSwitch driver and allows
the user to switch individual relays. This is further discussed in the IndividualRelayMode
discussion below.

o Lodgfile: Allows the user to specify a file to which the driver can log calls and other data.

o0 Logmode: Specifies the mode in which the log file is opened. The allowed modes are:

e Ww: truncate s the file to zero length or creates a text file for writing.
e a: opens the file for adding information to the end of the file. The file is created if it
does not exist. The stream is positioned at the end of the file.

0 LogLevel: Allows the user to determine the severity of a log message by providing a
level-indicator to the log entry.

10

VTEX Switch Driver Programmer’s Manual

www.vtiinstruments.com

o0 Slots: This is the most commonly used option and it allows for a slot number or a slot
number and a card model to be specified. This option is further discussed in the Slots
discussion below.

"Slots=(2)" - Just slot 2.
"Slots=(2=EX1200_3048)" - slot and card model, in simulation mode
"Slots=(2,3)" - Multiple slots

e InterchangeCheck: Boolean option that enables/disables IVI Interchangeability checking. As
implemented in the VTI IVI drivers, values entered for this property have no effect.

e RangeCheck: Boolean option that enables or disables driver validation of user-submitted
values. As implemented in the VTI VI drivers, validation of user inputs is always performed
at the firmware level regardless of this property’s value.

e RecordCoercions: Boolean option that enables driver recording of coercions. As
implemented in the VTI VI drivers, coercions are handled in the firmware and cannot be
recorded.

DCF INFORMATION

For its operation, the switch driver relies on a Device Configuration File (DCF) which describes
the geometry and properties of the device, in this case, the switch module. The DCF can describe a
single device, such as a plug-in card, or an entire system, such as the EX7000. Each switch
module carries its own DCF and the driver retrieves it when it first connects to the instrument as
part of the Initial ize method call. Please note, the DCF’s content and syntax are beyond the
scope of this document and will not be discussed.

NOTE

An EX7000 system is described by a single DCF which is part of its firmware. In simulation
mode, a DCF file describing the system needs to be installed on the host. For more information on
Simulation Mode, please reference the IVI Foundation’s 1VI-3.2, Inherent Capabilities
Specification.

SLOTS

To support simulation mode, the driver installer installs the appropriate DCF files in a directory on
the host computer. The file name should be <switch_card_model>.dcf. A DCF file for an
EX1200-3048, for example, would be EX1200_3048.dcf. In addition, the driver installer sets an
environment variable named LIBVTEX_DIR to point to the directory that contains the DCF files.

For the EX7000, a Configurator utility creates an appropriate DCF from a GUI-oriented user
description of the system components. The resulting file can be saved to a local drive (e.g. for
simulation sessions) or downloaded to an actual system.

This option is used to request plug-in slots for a particular driver session. All acquired slots are
logically grouped together to form a virtual instrument. If this option is not specified, the driver
will attempt to connect to all switch slots in the instrument.

The application program indicates the instruments it controls by listing their respective slots. In
simulation mode, the switch modules’ IDs are also listed. The requested slot list can be a
numerical range, a comma separated list, or a combination of both, as illustrated by the examples
below:

e A numerical slot range consists of two numbers separated by a dash, such as “1-3", where
the first slot number must be less than the second.

e A comma-separated list consists of a sequence of slot numbers, “4,5,6” for example, which
can be specified in any order.

VTEX Switch Driver Programmer’s Manual 11

VTI Instruments Corp.

e Insimulation mode, it is necessary to specify a module ID because there is no communication
between the application and the instrument. The syntax for specifying a module ID is
“*slotNumber’= ‘modulelD’”. For example, “Slots=(5=ex1200-3048)" informs the
driver that there is an EX1200-3096 module in slot 5 and that a file named ex1200-3048.dcf is
located in the directory to which LIBVTEX_DIR points. This form should only be used in
simulation mode. It should not be used when working with real hardware.

Virtual Instrument for Session 1

Virtual Instrument for Session 2

FIGURE 1-1: THREE VIRTUAL INSTRUMENTS IN A SINGLE EX-BASED SYSTEM

If only one slot is controlled, the application program can be simplified. In this case, the slot
number does not need to be specified in subsequent driver calls. It is implied that the user is
referring to the only switch slot being controlled.

MULTIPLE MAINFRAMES

When multiple mainframes are connected on a network, the user can initiate the mainframes
simultaneously by specifying multiple comma-separated resource strings in the Initialize
method call. In the case of multiple mainframes, references to slot numbers are incremented by
100 for each consecutive mainframe. For example, if three mainframes are initiated and use slots 1
through 16 in each mainframe, the slots would be referenced as follows: 1-16, 101-116, 201-
216. The slot number increment follows the order of the resource strings in the Initialize
method call.

Connecting to slots 1, 2, and 3 using dash separation

C++/COM:
driver->Initialize ("TCPIP::10.1.0.87::INSTR", querylD, reset, "DriverSetup= Slots=(1-3)");

C:
status = vtex_InitWithOptions ("TCPIP::10.1.0.87::INSTR", querylD, reset, "DriverSetup= Slots=(1-
3)", &viClassSessionHandle);

Connecting to slots 1, 2, and 3 using comma separation

C++/COM:
driver->Initialize ("TCPIP::10.1.0.87::INSTR", querylD, reset, "DriverSetup= Slots=(1,3,2)");

C:
status = vtex_InitWithOptions ("TCPIP::10.1.0.87::INSTR", querylD, reset, "DriverSetup=
Slots=(1,3,2)", &viClassSessionHandle);

Connect to slots and verify model type

C++/COM:

// Connect to slots 1 and 5. The driver verifies that slot 1 has a module

// of type EX1200-3096, and that slot 5 has a module of type EX1200-3048

driver->Initialize ("TCPIP::10.1.0.87::INSTR", querylD, reset, "DriverSetup= Slots=(1= ex1200-
3096, 5= ex1200-3048)");

C:

12 VTEX Switch Driver Programmer’s Manual

www.vtiinstruments.com

// Connect to slots 1 and 5. The driver verifies that slot 1 has a module

// of type EX1200-3096, and that slot 5 has a module of type EX1200-3048

status = vtex_InitWithOptions ("TCPIP::10.1.0.87::INSTR", querylD, reset, "DriverSetup= Slots=(1=
ex1200-3096, 5= ex1200-3048)", &viClassSessionHandle);

Simulate a system with two switch modules

C++/COM:

// Simulate a system with one EX1200-3096 module in slot 7 and one EX1200-3048 module in

// slot 9.

driver->Initialize ("TCPIP::10.1.0.87::INSTR", querylD, reset, "Simulate = true, DriverSetup=
Slots=(7 = EX1200-3096, 9 = EX1200-3048)");

C:

// Simulate a system with one EX1200-3096 module in slot 7 and one EX1200-3048 module in

// slot 9.

status = vtex_InitWithOptions ("TCPIP::10.1.0.87::INSTR", querylD, reset, "Simulate = true,
DriverSetup= Slots=(7 = ex1200-3096, 9 = ex1200-3048)", &viClassSessionHandle);

Implicitly request all containing switch cards

C++/COM:
// Implicitly requesting all slots that contain switches.
driver->Initialize ("TCPIP::10.1.0.87::INSTR", querylD, reset, "'");

Cs

// Implicitly requesting all slots that contain switches.

status = vtex_InitWithOptions ("TCPIP::10.1.0.87::INSTR", querylD, reset, ",
&viClassSessionHandle);

Connect to three slots with the same model type

C++/COM:
// Connect to slots 7, 8 and 9, each of which contains a EX1200-3048 module
driver->Initialize ("TCPIP::10.1.0.87::INSTR", querylD, reset, "DriverSetup= Slots=(7-9 = ex1200-

3048)"");
C:
// Connect to slots 7, 8 and 9, each of which contains a EX1200-3048
// module

status = vtex_InitWithOptions (“TCPIP::10.1.0.87::INSTR", querylD, reset, "DriverSetup= Slots=(7-
9 = ex1200-3048)", &viClassSessionHandle);

Connect to multiple cards on multiple mainframes

C++/COM:
// Connect to cards 1-3 on IP 10.1.0.87, cards 1-3 on IP 10.1.0.88, and cards 5-10 on IP
10.1.0.100.

driver->Initialize("TCPIP::10.1.0.87::INSTR]TCPIP::10.1.0.88::INSTR|TCPIP::10.1.0.100: : INSTR",
querylD, reset, "DriverSetup= Slots=(1-3, 101-103, 205-210)");

Cs

// Connect to cards 1-3 on IP 10.1.0.87, cards 1-3 on IP 10.1.0.88, and cards 5-10 on IP

// 10.1.0.100.

status = vtex_InitWithOptions
("TCPIP::10.1.0.87::INSTR|TCPIP::10.1.0.88::INSTRJTCPIP::10.1.0.100::INSTR **, querylD,
reset, "DriverSetup= Slots=(1-3, 101-103, 205-210)", &viClassSessionHandle);

Invalid — First slot number is greater than the second slot number

C++/COM:
driver->Initialize ("TCPIP::10.1.0.87::INSTR", querylD, reset, "DriverSetup= Slots=(3-1)");

VTEX Switch Driver Programmer’s Manual 13

VTI Instruments Corp.

C:

status = vtex_InitWithOptions ("TCPIP::10.1.0.87::INSTR", querylD, reset, "DriverSetup= Slots=(3-

1)*, &viClassSessionHandle);

Invalid — Module not specified in simulation mode

C++/COM:

driver->Initialize ("TCPIP::10.1.0.87::INSTR", querylD, reset, "Simulate = true, DriverSetup=

C:

Slots=(7, 9)");

status = vtex_InitWithOptions ("TCPIP::10.1.0.87::INSTR", querylD, reset, "Simulate = true,

DriverSetup= Slots=(7, 9)", &viClassSessionHandle);

Invalid — Slot numbers not specified with module ID in simulation mode

C++/COM:

driver->Initialize ("TCPIP::10.1.0.87::INSTR", querylD, reset, “Simulate = true™);

C:

status = vtex_InitWithOptions ("TCPIP::10.1.0.87::INSTR", querylD, reset, "Simulate = true",

&viClassSessionHandle);

INDIVIDUALRELAYMODE

If this Boolean option is True, IVI-compliant “path-level” methods will not be available for the
session. Instead, several “relay-level” methods, such as OpenRelays, CloseRelays, and
others, are available. These methods provide a means to directly toggle individual relays. The

default value for this Boolean is False.

The table below lists the methods and properties that are restricted to one mode or the other. All
other methods and properties in the driver are always available.

IndividualRelayMode = False IndividualRelayMode = True

Path
CanConnect (...)
Connect (...)
Disconnect (...)
GetPath (...)
SetPath (...)

Scan
Abort (...)
ConfigureList (...)
ConfigureTrigger (...)
Initiate (...)
WaitForScanComplete (...)
AdvancedOutput
Continuous
Delay
Input
IsScanning
List
Mode

InstrumentSpecific
ExternalConnection (...)
AddPathLevelExcludeList (...)
RemovePathLevelExcludeList (...)

InstrumentSpecific

OpenRelays (...)
CloseRelays (...)

TABLE 1-1: METHODS AND PROPERTIES AVAILABLE IN EACH MODE

14

VTEX Switch Driver Programmer’s Manual

www.vtiinstruments.com

Control slots 1, 2, and 3 using Individual Relay Mode

C++/COM:
driver->Initialize ("TCPIP::10.1.0.87::INSTR", querylD, reset, "DriverSetup= slots=(1-3),
IndividualRelayMode = True™);

C:
status = vtex_InitWithOptions ("TCPIP::10.1.0.87::INSTR", querylD, reset, "DriverSetup= slots=(1-
3), IndividualRelayMode = True', &viClassSessionHandle);

Using IndividualRelayMode during a simulation

C++/COM:
driver->Initialize ("TCPIP::10.1.0.87::INSTR", querylD, reset, “Simulate=true, DriverSetup=
slots=(1-3 = ex1200-3096), IndividualRelayMode = True™);

C:

status = vtex_InitWithOptions ("TCPIP::10.1.0.87::INSTR", querylD, reset, "Simulate=true,
DriverSetup= slots=(1-3 = ex1200-3096), IndividualRelayMode = True",
&viClassSessionHandle);

Invalid — True or False not indicated for Individual Relay Mode

C++/COM:
driver->Initialize ("TCPIP::10.1.0.87::INSTR", querylD, reset, "DriverSetup= slots=(1-3),
IndividualRelayMode = 2');

Cs
status = vtex_InitWithOptions (“TCPIP::10.1.0.87::INSTR", querylD, reset, "DriverSetup= slots=(1-
3), IndividualRelayMode = 2", &viClassSessionHandle);

VTEX Switch Driver Programmer’s Manual 15

VTI Instruments Corp.

INSTRUMENT SPECIFIC INTERFACE

INTRODUCTION
In addition to the interfaces in the standard I\VVI Switch class definition, the VTEX switch driver
implements an instrument specific interface. The following capabilities are shared by the EX1200,

SMX, and EX7000 systems. The EX7000 includes additional calls specific to its operation. For
more information, please refer to the EX7000 Specific Interface section.

REPEATED CAPABILITIES
See 1VI-3.1, Driver Architecture specification for an explanation of repeated capabilities.

Channels

This repeated capability is part of the standard IVI Switch class definition. As a convenience to the
user, the VTEX switch driver also provides the ListOfChannels method to list all of the
channels defined for the instrument.

ListOfChannels

This is a read-only string property that returns a comma-separated list of all switch channels
known to the system.

ListOfChannels Usage

C++/COM:

_bstr_t myChannels = driver->InstrumentSpecific->ListOfChannels;

C:

ViChar myChannels[10240]; // Reserve a sufficiently large buffer

status = vtex_GetAttributeViString (viSessionHandle, “7,
VTEX_ATTR_INSTRUMENTSPECIFIC_LIST_OF CHANNELS, 10240, myChannels);

After these calls have been made, myChannels will contain a complete channel list, including
both true “channels” and “configuration channels”, e.g. “1YCH1,11CH2,11CH3,2ICHA,
21CHB,5TVINT1,5VINT2”, etc

SerialNumber

This is a read-only string property. It returns the switch card’s serial number or, if the session
controls multiple switch cards, a comma separated list of their serial numbers.

SerialNumber Usage

C++/COM:

_bstr_t thisSerialNumber = driver->InstrumentSpecific->SerialNumber;

Cs

ViChar thlsSerlaINumber[SlZ] // Reserve a sufficiently large buffer

status = vtex_GetAttributeViString (viSessionHandle,
VTEX_ATTR_INSTRUMENTSPECIFIC_SERIAL_NUMBER, 512, thlsSerlaINumber)

USER-DEFINED RELAY CONFIGURATIONS

EX-platform based switch modules support multiple user-defined configurations, numbered from
0. Each configuration is a bitmap, with each bit corresponding to one relay, or one coil, in the case
of multi-coil relays. A ‘0’ indicates an open relay, ‘1’ indicates a closed relay.

16 VTEX Switch Driver Programmer’s Manual

www.vtiinstruments.com

e Configuration #0 is the “power up” state. If it is defined and downloaded to the instrument,
the switch module’s relays will be set, as required, by this configuration when power is first
applied.

e Configuration #1 is the “reset” state. If it is defined and downloaded to the instrument, the
switch module’s relays will be set, as required, by this configuration when the instrument is
reset.

The total number of available configurations depends on the specific switch module. The client
application can command the module to change all its relays to any predefined (and downloaded)
configuration by using the LoadState method. Configurations are defined and downloaded via
the instrument’s SFP. Example of usage:

Setting Usage

C++/COM:
driver->InstrumentSpecific->LoadState (12); // Set all relays per configuration #12

C:
status = vtex_InstrumentSpecificLoadState (viSessionHandle, 12);

EXTERNAL CONNECTIONS

By using this capability, an application program can indicate that one switch module channel is
physically connected to another switch module’s channel via an external wire. As an example, an
EX-based system has two matrix cards installed as follows:

Slot Number Front Panel Channels

3 CH1, CH2, CH3, CH4
5 CH A CHB,CH C,CHD,CHE

Here, it is possible to connect any channel to any other channel within the same module. The user
connects a physical wire from CH4 to CH_B. Using ExternalConnections, it becomes
possible to connect any channel from slot #3 to any channel in slot #5, extending the matrix size.

The client program notifies the driver of this connection by using the ExternalConnection
method. Examples of usage:

ExternalConnection Usage

C++/COM:
driver->InstrumentSpecific->ExternalConnection
(“31CH4”, “5ICH_B”); // 1l-wire connection
driver->InstrumentSpecific->ExternalConnection
(“31CH1,31CH2,31CH4”, “51CH_C,5!CH_D,5!ICH_E™); // 3-wire bus connection
C:
status = vtex_InstrumentSpecificExternalConnection (viSessionHandle,
“31CH4”, “5ICH_B”); // 1l-wire connection
status = vtex_InstrumentSpecificExternalConnection (viSessionHandle,
“31CH1,31CH2,31CH4”, “5ICH_C,5!CH D,5ICH _E™); // 3-wire bus connection
NOTES 1) ExternalConnection implements the same capability as the NISE “hardwire” concept.

2) This method has two string parameters, each of which is a comma separated list of channel
names. Each channel in the first list is considered externally connected, or hardwired, to the
corresponding channel in the second list.

3) Both lists must specify the same number of channels or an error will result.

4) An external connection, once defined, remains valid for the duration of the session, since in
normal usage wires are not typically disconnected during a test run..

VTEX Switch Driver Programmer’s Manual 17

VTI Instruments Corp.

ODOMETERS
EX-based switch cards maintain individual odometers for each relay, or coil, as is the case of
multi-coil relays. The odometer counts closures, or cycles, which include pairs of open and close
operations. The following example shows how to read the odometers of multiple relays.

Odometers Usage

C++/COM:

// Read the odometers for relays 5 and 102 in slot 3 plus relay 14 in slot 5
SAFEARRAY *odometersArray = NULL;

driver->InstrumentSpecific->GetOdometers (“3!K5,31K102,51K14”, &odometersArray);

C:
Vilnt32 odometersArray [10]; // Allocate a sufficiently large buffer
Vilnt32 arrayActualSize; // Returned by the driver

// Read the odometers for relays 5 and 102 in slot 3 plus relay 14 in slot 5
status = vtex_InstrumentSpecificGetOdometers (viSessionHandle, “31K5,31K102,51K14”, 10,
odometersArray, &arrayActualSize);

NOTES 1) The string argument is a comma separated list of relay names.
2) The returned array includes one integer for each relay specified in the list, in the same order.

EXCLUDE LISTS

The VI Switch specification provides a way for the application to avoid connecting two
incompatible channels, e.g. a 120 V source and a 5 V source. This is achieved by designating them
as “source channels”. The driver will refuse to connect two source channels. This is a safety
mechanism to be used as needed by the client application.

The VTEX switch driver provides more flexibility by extending this mechanism with two types of
exclude lists: path-level and relay-level exclude lists.

Path-level exclude lists

A path-level exclude list is a named collection of physical channels in the instrument. Once this
collection is defined during a session, the driver will prevent the application from connecting any
two channels listed in the same exclude list. The list can include any channels, whether in one
switch card (one slot) or multiple switch cards. Multiple exclude lists can be defined for the
session, as long as their names are unique. Two methods are provided: one to define a new
exclude list, the other to remove it from the current session.

Defining a path-level exclude list

C++/COM:

//

// Two channels in slot 3 and one channel in slot 5 are mutually exclusive
//

driver->InstrumentSpecific->AddPathLevelExcludeList
(“31CH1,31CH2,5ICH_D”, “Protect_power_sources™);

C:

//

// Two channels in slot 3 and one channel in slot 5 are mutually exclusive

//

status = vtex_InstrumentSpecificAddPathLevelExcludelList (viSessionHandle, “31CH1,3!CH2,5!CH D",
“Protect_power_sources™);

18 VTEX Switch Driver Programmer’s Manual

www.vtiinstruments.com

Deleting a path-level exclude list

C++/COM:
driver->InstrumentSpecific->RemovePathLevelExcludeList (“Protect_power_sources™);

C:
status = vtex_InstrumentSpecificRemovePathLevelExcludeList (viSessionHandle,
“Protect_power_sources™);

RELAY SPECIFIC INTERFACES

The VTEX switch driver provides several features that allow controlling and monitoring the
individual relays in an EX-based system. In the Initialize call, customers can choose this
methodology instead of the IVI standard path-level programming. These features include three
methods and one property.

Close Relays

The client application can close any number of relays, identified by their names. The relays can be
in any switch module on the same system. This method closes all the relays in the list, or activates
the respective coils, in the case of a multi-coil relay.

CloseRelays Usage

C++/COM:
driver->InstrumentSpecific->CloseRelays (“21K5,21K15,41K17,61K100,6!1K102");

C:
status = vtex_InstrumentSpecificCloseRelays (viSessionHandle, “21K5,21K15,41K17,61K100,6!1K102);

Open Relays

The client application can open any number of relays, identified by their names. The relays can be
in any switch module on the same system. This method opens all the relays in the list, or de-
activates the respective coils, in the case of a multi-coil relay.

OpenRelays Usage

C++/COM:
driver->InstrumentSpecific->0OpenRelays (“21K5,21K15,41K17,6!K100,6!K102");

C:
status = vtex_InstrumentSpecificOpenRelays (viSessionHandle, “21K5,21K15,41K17,61K100,6!K102");

Get Relay State

At any point in time, the client application may need to know the current state (i.e. closed or open)
of a relay or coil. This may be particularly useful at power up, or in high-integrity applications.
This method provides the user the best information it has about a relay/coil’s state in both path-
level and relay-level modes. Some relays have readable confidence indicators which provide
confirmation of the contact state. Others, however lack this ability.

GetRelayState Usage

C++/COM:

//

// Ask the state of K2_12. One of 4 answers is possible:
// VTEXSwitchRelayStateOpen

// VTEXSwitchRelayStateClosed

// VTEXSwitchRe layStateCommandedOpen

VTEX Switch Driver Programmer’s Manual 19

VTI Instruments Corp.

// VTEXSwitchRe layStateCommandedClosed
//

VTEXSwitchRelayStateEnum openOrClosed;
openOrClosed = driver->InstrumentSpecific->GetRelayState (“K2_12"");

C:

//

// Ask the state of K2_12. One of 4 answers is possible:
// VTEX_VAL_RELAY_STATE_OPEN

// VTEX_VAL_RELAY_STATE_CLOSED

// VTEX_VAL_RELAY_STATE_COMMANDED_OPEN

// VTEX_VAL_RELAY_STATE_COMMANDED_CLOSED

Vilnt32 openOrClosed;
status = vtex_InstrumentSpecificGetRelayState (viSessionHandle, “K2_12”, &openOrClosed);

NOTES 1) The string argument should include only one relay name.
2) The method returns “open” or “closed” when it has positive indication of the actual state of the
relay or coil.

3) The method returns “commanded open” or “commanded closed” when it lacks positive
indication of the relay or coil state. In this case, it can only return the last commanded position.

Verify Relay State

To provide more flexibility to the client application, and reduce the amount of coding required, the
VTEX switch driver can automate the process of verifying relay states for high-integrity
applications. This Boolean property, when set, causes the instrument to always read back the
relay’s state and compare them to the commanded values. This is performed without application
intervention. If the instrument detects a mismatch, it records an error in its internal queue. 1VI
specifications include automatic notification of such errors through the use of the inherent
property QuerylInstrumentStatus.

VerifyRelayState Usage

C++/COM:

//

// Turn on automatic error notification

//

driver->QuerylnstrumentStatus = true;

//

// .. and turn on automatic relays state verification

//

driver->InstrumentSpecific->VerifyRelayState = true;

C:

//

// Turn on automatic error notification

//

status = vtex SetAttributeViBoolean (viSessionHandle, “*, VTEX_ATTR_QUERY_INSTRUMENT_STATUS,
VI_TRUE) ;

//

// .. and turn on automatic relays state verification

//

status = vtex_SetAttributeViBoolean (viSessionHandle, “”
VTEX ATTR_INSTRUMENTSPECIFIC_VERIFY_RELAY_STATE, VI _TRUE);

20 VTEX Switch Driver Programmer’s Manual

www.vtiinstruments.com

NOTES

1) VerifyRelayState can be set to True or False multiple times during a session. The
default value is False.

2) The instrument operation will slow down when this Boolean is set to true. After commanding
the relays to a new state, the system has to wait for them to debounce and only then read the
confidence indicators. In effect, this injects a WaitForDebounce call after each method that
closes or opens any relay. The slowdown may become apparent and the application program
should be ready for this effect.

FuUNCTION CALL LOGGING

Two methods are provided to aid in debugging application programs. With logging enabled, the
driver records all function calls, parameter values and errors or warnings.

Open log file

This method initiates logging to a specified file.

OpenLogFile Usage

C++/COM:
//

// Turn on logging, append to existing file

//

driver->InstrumentSpecific->0OpenLogFile (“Log_July 77, “a”);

C:
//

// Turn on logging, append to existing file

//

status = vtex_InstrumentSpecificOpenLogFile (viSessionHandle, “Log_July 77, “a”);

NOTES

1) The second string argument is “a” to append or “w” to overwrite an existing file. If the file does
not exist, it is created.
2) The client program must have write access to the file and/or to the directory containing it.

Close log file

This method stops the logging process.

CloseLogFile Usage

C++/COM:
//

// Turn logging off

//

driver->InstrumentSpecific->CloseLogFile ();

C:
//

// Turn logging off

//

status = vtex_InstrumentSpecificCloseLogFile (viSessionHandle);

VTEX Switch Driver Programmer’s Manual 21

VTI Instruments Corp.

EX7000 SPECIFIC INTERFACE

INTRODUCTION

The following calls are specific to the EX7000 and includes the use of the parallel 10 and
configuration of attenuators.

REPEATED CAPABILITIES

Two repeated capability collections are available: ParallellOs and Attenuators. See IVI-3.1, Driver
Architecture specification for an explanation of repeated capabilities.

ParallellOs

This repeated capability is only defined for EX7000 systems. It provides access to two types of
parallel 10 ports: predefined (or built-in) and user-defined (or ‘soft’). The application program
handles both types in similar manner.

The following code examples refer to a hypothetical EX7000 system with three RDBs, where the
following soft ports were defined by the user:

Port name Number of lines | Relay drive lines

Motor_control 6 K1 11to K1 16
Range_finder 10 K2_1to K2_10
Azimuth 14 K3_31to K3 44

The application program is presumed to have initialized a reference pointer to the Paral lel 10s
interface, using the following syntax:

ParallellOs reference pointer initialization

C++/COM:

IVTEXSwitchParallel10sPtr pParallellOs = driver->InstrumentSpecific->ParallellOs;
C:

ViSession viSessionHandle;

status = lviSwtch_GetSpecificDriverCHandle (viClassSessionHandle, &viSessionHandle);

OutputEnableMask

The application program can write any value to the built-in, 32-bit TTL ports. The hardware
provides a mask that allows only some bits to be sent out, while not affecting the others. The
OutputEnableMask read/write property lets the user define which part of the 32-bit value will
be written to an external device. This way, multiple devices can be controlled individually while
connected to different parts of the TTL port.

NOTE OutputEnableMask is not supported for the soft (user-defined) parallel 10 ports since these
are always enabled.

Data

This read/write property is the value written to the port. Note in the example below how the driver
treats predefined and user-defined ports in the same manner:

22 VTEX Switch Driver Programmer’s Manual

www.vtiinstruments.com

OutputEnableMask & Data Usage

C++/COM:

long position;

long angle;
pParallell10s->1tem["TTL2"]->0OutputEnableMask = Ox3ff;
pParallellOs->1tem["TTL2"]->Data = 934;

pParallel10s->1tem["'Motor_control*]->Data = 103;
position = pParallellOs->1tem["Motor_control']->Data;

angle = pParallell0s->l1tem["Azimuth']->Data;

C:
Vilnt32 position;
Vilnt32 angle;

status = vtex_ SetAttributeVilnt32 (viSessionHandle, “TTL2”,
VTEX_ATTR_PARALLELIO_OUTPUT_ENABLE_MASK, Ox3ff);

status = vtex_SetAttributeVilnt32 (viSessionHandle, “TTL2”,
status = vtex_SetAttributeVilnt32 (viSessionHandle,

103);
status = vtex_GetAttributeVilnt32 (viSessionHandle,

&position);

status = vtex_GetAttributeVilnt32 (viSessionHandle,
&angle);

// Enable bits 9-0
// TTL<9-0> on RDB1 gets 934

// Move the motor
// .. and read its position

// Read the azimuth

// Enable bits 9-0

VTEX_ATTR_PARALLEL10_DATA, 934);
// TTL<9-0> on RDB1 gets 934

“Motor_control”, VTEX_ATTR_PARALLELIO_DATA,

// Move the motor

“Motor_control”, VTEX_ATTR_PARALLELIO_DATA,

// .. and read its position

“Azimuth”, VTEX_ATTR_PARALLELIO_DATA,

// Read the azimuth

ListOfParallellOs

This is a read-only string property, applicable to EX7000 systems. It returns a comma separated

list of all parallel 10 ports configured in the system.

ListofParallellOs Usage

C++/COM:
_bstr_t myPorts =

C:
ViChar myPorts[512];
status = vtex_GetAttributeViString (viSessionHandle, “”,

driver->InstrumentSpecific->ListOfParallellOs;

// Reserve a sufficiently large buffer

VTEX_ATfh_INSTRUMENTSPECIFIC_LIST_OF_PARALLEL_I_OS, 512, myPorts);

After these calls, myPorts will have the value: “TTL1,TTL2,TTL3,Motor_control,

Range_finder,Azimuth”.

VTEX Switch Driver Programmer’s Manual

23

VTI Instruments Corp.

Attenuators

This repeated capability is only defined for EX7000 systems. It provides access to one or more
attenuators controlled through the drive lines. The user could control an attenuator’s operation by
defining a soft parallel port, and then writing correct bit patterns to it to achieve the required
attenuation. However, the Attenuators interface provides a more intuitive and readable way to
program attenuators whose control patterns are already known (i.e. are defined in the DCF). The
following code examples refer to a hypothetical EX7000 system with two RDBs, where the user
has defined the following attenuators:

Port name Number of lines Relay drive lines Allowed settings
Signal2_reducer 6 K1 11to K1 16 | 0dB-90dB, 10 dB steps
Signal3_reducer 8 K2 1to K2 8 1dB-11dB, 1 dB steps

The application program is presumed to have initialized a reference pointer to the Attenuators
interface, using the following syntax:

Attenuator Initialization

C++/COM:

IVTEXSwitchAttenuatorsPtr pAttenuators = driver->InstrumentSpecific->Attenuators;

Setting

The application program can set the required attenuation and read the current setting by using this
read/write property. Note that all attenuators are accessed the same way, regardless of their type or
the relay drive lines to which they are connected.

Setting Usage

C++/COM:

double setting;

pAttenuators->ltem[*"Signal2_reducer']->Setting = 20.0; // Set this one to 20 dB
setting = pAttenuators->ltem["Signal2_reducer']->Setting; // .. and read it back
pAttenuators->ltem["Signal3_reducer']->Setting = 10.0; // Set that one to 10 dB
Cs

ViReal64 setting;

status = vtex_SetAttributeViReal64 (viSessionHandle, “Signal2_reducer”,

VTEX_ATTR_INSTRUMENTSPECIFIC_ATTENUATOR_SETTING, 20.0); // Set this one to 20 dB

status = vtex_GetAttributeViReal64 (viSessionHandle, “Signal2_reducer”,

status
VTEX_ATTR_INSTRUMENTSPECIFIC_ATTENUATOR_SETTING, 10.0); //Set that one to 10 dB

VTEX_ATTR_INSTRUMENTSPECIFIC_ATTENUATOR_SETTING, &setting); // and read it back

vitex_SetAttributeViReal64 (viSessionHandle, “Signal3_reducer”,

24

VTEX Switch Driver Programmer’s Manual

www.vtiinstruments.com

ListOfAttenuators

This is a read-only string property, applicable to EX7000 systems. It returns a comma separated
list of all attenuators configured in the system. Examples of usage:

ListOfAttenuators Usage

C++/COM:

_bstr_t myAttenuators = driver->InstrumentSpecific->ListOfAttenuators;

C:

ViChar myAttenuators[512]; // Reserve a sufficiently large buffer

status = vtex_GetAttributeViString (viSessionHandle, “”,
VTEX_ATTR_INSTRUMENTSPECIFIC_LIST_OF_ATTENUATORS, 512, myAttenuators);

After the calls above have been made, myAttenuators will have the value
“Signal2_reducer,Signal3_reducer”.

VTEX Switch Driver Programmer’s Manual 25

VTI Instruments Corp.

SECTION 2

APPLICATION EXAMPLES

INTRODUCTION
The following section provides some practical examples of how some methods/properties can be
used together to meet certain user requirements. Situations will be provided and an appropriate
programming example will follow.

Setup Example

In this example, the correct resource descriptor and driver-specific initialization string is set and
then the logic is filled in at the indicated place. This example will be show in three different
programming languages.

1VI-C Example

//

// Sample IVI-C program using the VTEXSwitch driver.

// Just set the correct resource descriptor and driver-specific initialization string
// then fill in the "real® logic at the indicated place.

//

#include *“stdio.h"
#include "tchar.h"
#include "lviSwtch.h"
#include "vtex.h"

L1111 1777777777777777777777777777777//77777//77777///777////777////7///////7/////777

//

// utility to print errors reported by the driver operation or

// by the instrument.

//

L1111 1777777777777777777777777777777//77777/7/7777///777////777////7///////7/////777

#define MESSAGE_SIZE (10240)

ViSession driverHandle = NULL; // Used by the utility and by the main test program

void CheckForError (ViStatus status)

{
ViStatus localStatus, errorCode;
ViChar errorMessage[MESSAGE_SIZE];
//
// Print the received error message.
//

if (status < VI_SUCCESS)
localStatus = vtex_error_message (VI_NULL, status, errorMessage);
printf (‘'Received error code Ox%x : %s\n', status, errorMessage);
// IT it indicated an instrument error print that one, too

if ((driverHandle = NULL) && (status == 1VI_ERROR_INSTRUMENT_STATUS))

26 VTEX Switch Driver Programmer’s Manual

www.vtiinstruments.com

localStatus = vtex_error_query (driverHandle, &errorCode, errorMessage);
printf (“Error code from instrument was Ox%x : %s\n', errorCode, errorMessage);

3

//

// IT any error was reported, just bail out - fix the error first, then try again;
// equivalent to the COM "catch® block operation.

//

if (status < VI_SUCCESS)

{

printf ("Type any key to exit : ');
fflush (stdout);
getchar(Q);
exit (-1);
3
3

1111177777777/ ///77
//

// Main example program

//
////777777777777777777777777/77/77777777//7/7777/7//7////////////////////////////////777
int _tmain(int argc, _TCHAR* argv[])

{
Vilnt32 value = 0;
ViReal64 realValue = 0.0;
ViRsrc resourceName = "TCPIP::169.254.1_2::INSTR";
ViChar text[MESSAGE_SIZE];
ViString strDriverOptions = “Simulate=True, QuerylnstrStatus=True, DriverSetup=

Mode I=EX7000, Trace=false, slots=(1=MySwitchCard), IndividualRelayMode=True";

//

// Initialize and print some driver attributes.

//

CheckForError (vtex_InitWithOptions (resourceName,
VI1_TRUE, // 1dQuery
V1_FALSE, // Reset
strDriverOptions, // Options string
&driverHandle)

);
// Driver revision

CheckForError (vtex_GetAttributeViString (driverHandle, "',
IVI_ATTR_SPECIFIC_DRIVER_REVISION, MESSAGE_SIZE, text));
printf ('Driver revision: %s\n", text);

// Driver vendor

CheckForError (vtex_GetAttributeViString (driverHandle, ",
IVI_ATTR_SPECIFIC_DRIVER_VENDOR, MESSAGE_SIZE, text));

printf (“'Driver vendor: %s\n', text);

// Driver vendor

CheckForError (vtex_ GetAttributeViString (driverHandle, ",
IVI_ATTR_SPECIFIC_DRIVER_DESCRIPTION, MESSAGE_SIZE, text));

printf ("Driver description: %s\n', text);

// Supported group capabilities

CheckForError (vtex GetAttributeViString (driverHandle, ",
IVI_ATTR_GROUP_CAPABILITIES, MESSAGE_SIZE, text));

printf (“'Supported 1VI group capabilities: %s\n', text);

// Instrument model

CheckForError (vtex_GetAttributeViString (driverHandle, ",
IVI_ATTR_INSTRUMENT _MODEL, MESSAGE_SIZE, text));

printf ("Instrument model: %s\n', text);

// Instrument firmware revision

CheckForError (vtex_GetAttributeViString (driverHandle, "',
1VI_ATTR_INSTRUMENT_FIRMWARE_REVISION, MESSAGE_SIZE, text));

printf ("Instrument firmware revision: %s\n", text);

VTEX Switch Driver Programmer’s Manual

27

VTI Instruments Corp.

// Instrument manufacturer

CheckForError (vtex_GetAttributeViString (driverHandle, "*,
IVI_ATTR_INSTRUMENT_MANUFACTURER, MESSAGE_SIZE, text));

printf ("Instrument manufacturer: %s\n", text);

// Supported instrument models

CheckForError (vtex GetAttributeViString (driverHandle, ",
IVI_ATTR_SUPPORTED_INSTRUMENT_MODELS, MESSAGE_SIZE, text));

printf (“'Supported instrument models: %s\n", text);

L1177 777177777717777777777777777777777//77717//7//77//7//7///7///////7//7///7/

// Insert the actual application code here. Some example code follows
//
// List all the channels in this switch card

CheckForError (vtex GetAttributeViString (driverHandle, ",
VTEX_ATTR_INSTRUMENTSPECIFIC_LIST_OF CHANNELS, MESSAGE_SIZE, text));

printf (“'Defined channels : %s\n', text);

//

// List the attenuators

CheckForError (vtex GetAttributeViString (driverHandle, ",
VTEX_ATTR_INSTRUMENTSPECIFIC_LIST_OF ATTENUATORS, MESSAGE_SIZE, text));

printf (“'Defined attenuators : %s\n', text);

//

// List the parallel 10 ports

CheckForError (vtex_GetAttributeViString (driverHandle, ",
VTEX_ATTR_INSTRUMENTSPECIFIC_LIST_OF_PARALLEL_I_OS, MESSAGE_SIZE,

text));

printf (“'Defined parallel 10s: %s\n', text);

//

// Set a few bits in one "soft" parallel 1/0 port

CheckForError (vtex_ SetAttributeVilnt32 (driverHandle, "BAND_LED",
VTEX_ATTR_PARALLELI10_DATA, 0x2A));

//

// Read back and print current its value

CheckForError (vtex GetAttributeVilnt32 (driverHandle, "BAND_LED",
VTEX_ATTR_PARALLEL10_DATA, &value));

printf(""\nRead back data from BAND_LED: Ox%x\n", value);

//

// Set an attenuator value

CheckForError (vtex_SetAttributeViReal64 (driverHandle, "AT1",
VTEX_ATTR_INSTRUMENTSPECIFIC_ATTENUATOR_SETTING, 10.0));

//

// Read back and print current its value

CheckForError (vtex_GetAttributeViReal64 (driverHandle, "AT1",
VTEX_ATTR_INSTRUMENTSPECIFIC_ATTENUATOR_SETTING, &realValue));

printf(""Attenuator 1 setting is: %f\n", realValue);

//

// Close some relays, open others

CheckForError (vtex_ InstrumentSpecificCloseRelays (driverHandle, "K1_3, K1 5, K1_6"));
CheckForError (vtex_InstrumentSpecificOpenRelays (driverHandle, "K1_2, K1 _3, K1 _4"));
//

//

///117/77/77/77/77/7/777/7777777777/77/77/7/7/77/7/77/7/7/7/7/////////////////////////////////777

printf ("Type any key to exit : '");
fflush (stdout);

getchar(Q);

return(0);

VTEX Switch Driver Programmer’s Manual

www.vtiinstruments.com

IVI-Com Example

//

// Sample IVI-COM program using the VTEXSwitch driver.

// Just set the correct resource descriptor and driver-specific initialization string
// then fill in the "real® logic at the indicated place.

//

#include "stdafx.h"
#include <atlstr.h>

int _tmain(int argc, _TCHAR* argv[])

{
:Colnitialize(NULL);
try
{
//
// Instantiate the specific driver, get a pointer to it
//
IVTEXSwitchPtr RFSwitching(__uuidof(VTEXSwitch));
//
// Get some interface pointers - they come in handy, to shorten lines of code
//
IlviDriverldentityPtr pldentity = RFSwitching->ldentity;
IVTEXSwitchParallel 10sPtr pParallel = RFSwitching->InstrumentSpecific-
>Parallell0s;
IVTEXSwitchlnstrumentSpecificPtr pSpecific = RFSwitching->InstrumentSpecific;
IVTEXSwitchAttenuatorsPtr pAttenuator = RFSwitching-
>InstrumentSpecific->Attenuators;
try
{
//
// llviDriverldentity properties - Initialize not required
//

wprintf (L"Driver identifier: %s\n", pldentity->ldentifier.GetBSTR());
wprintf (L"Driver revision: %s\n", pldentity->Revision.GetBSTR());
wprintf (L"Driver vendor: %s\n', pldentity->Vendor.GetBSTR());

wprintf (L"Driver description: %s\n", pldentity->Description.GetBSTR());

//

// Setup VISA resource descriptor: a real address or an IVl logical name e.g.
// CString strResourceDesc = "VTEXSwitchTarget';

//

CString strResourceDesc = "TCPIP::169.254_1.2::INSTR";

CString strDriverOptions = "Simulate=True, QuerylnstrStatus=True, DriverSetup=

Mode I=EX7000, Trace=false, slots=(1=MySwitchCard), IndividualRelayMode=True";

RFSwitching->Initialize(LPCTSTR(strResourceDesc),
VARIANT_TRUE,

// 1dQuery
VARIANT_FALSE,
// Reset
LPCTSTR(strDriverOptions));
//
// llviDriverldentity properties - Initialize required
//

wprintf (L"Supported 1Vl group capabilities: %s\n', pldentity-
>GroupCapabilities.GetBSTR());

wprintf (L"Instrument model: %s\n", pldentity->InstrumentModel .GetBSTR());

wprintf (L"Instrument firmware revision: %s\n", pldentity-
>InstrumentFirmwareRevision.GetBSTR());

wprintf (L"Instrument manufacturer: %s\n", pldentity-
>InstrumentManufacturer .GetBSTR());

wprintf (L"Supported instrument models: %s\n", pldentity-
>SupportedlinstrumentModels.GetBSTR());

VTEX Switch Driver Programmer’s Manual 29

VTI Instruments Corp.

>Data);

L1111 1777777777777777777777777/77777//77777////77/////77/////////////7////7/777/
// Insert the actual application code here. Some example code follows

//

wprintf (L"Defined channels : %s\n', pSpecific->ListOfChannels.GetBSTR());
wprintf (L"Defined attenuators: %s\n', pSpecific->ListOfAttenuators.GetBSTR());
wprintf (L"Defined parallel 10s: %s\n", pSpecific->ListOfParallellOs.GetBSTR());

pParallel->1tem[""'BAND_LED']->Data = Ox2A;
printf (""\nRead back data from BAND_LED: Ox%x\n', pParallel->1tem["'BAND_LED"]-

pAttenuator->1tem["AT1"]->Setting = 10.0;
printf (“"Attenuator 1 setting is: %f\n", pAttenuator->ltem["AT1"]->Setting);

pSpecific->CloseRelays ("K1_3, K1_5, K1_6");

pSpecific->0OpenRelays ('K1_2, K1_3, K1_4");

//

//

/1111777777 //////7///////////////////////7//////////////////////////////////7777

// Check instrument for errors
long IErrorNumber = -1;
_bstr_t bstrErrorMessage;
printf ('\n");

while (IErrorNumber != 0)

RFSwitching->Utility->ErrorQuery(&IErrorNumber,

bstrErrorMessage.GetAddress());

by
1/

//
//
//

printf (“ErrorQuery: %d, %s\n", IErrorNumber, bstrErrorMessage);

}

This catch block will intercept errors returned from the driver while it is
operating.

catch (_com_erroré& errorl)

{
}

: :MessageBox(NULL, errorl.Description(), errorl._ErrorMessage(), MB_ICONERROR);

it (RFSwitching !'= NULL && RFSwitching->Initialized)

// Close driver
RFSwitching->Close();

This catch block will intercept errors returned while trying to instantiate the
driver itself.

catch (_com_error& error2)

{

: :MessageBox(NULL, error2.Description(), error2._ErrorMessage(), MB_ICONERROR);

}

::CoUninitialize();

printf(""\nDone - Press Enter to Exit™);
getchar(Q);

return 0O;

30

VTEX Switch Driver Programmer’s Manual

www.vtiinstruments.com

C++ Linux Example

//
// Sample C++ program (Linux Client) using the VTEXSwitch driver.

// Just set the correct resource descriptor and driver-specific initialization string

// then fill in the "real® logic at the indicated place.
//

#include "libSwitch.h"
#include <iostream>
using namespace std;

int main (int argc, char** argv)

{
try
{
//
// Instantiate the specific driver, get a pointer to it
//
LibSwitch* RFSwitching = new LibSwitch();
//
// Get some interface pointers - they come in handy, to shorten lines of code
//
LibInherentCapabilityldentity* pldentity = RFSwitching->ldentity;
LibSwitchlnstrumentSpecific* pSpecific = RFSwitching->InstrumentSpecific;
try
//
// llviDriverldentity properties - Initialize not required
//

string temp = pldentity->ldentifier;

printf ('Driver identifier: %s\n", temp.c_str());
temp = pldentity->Revision;

printf ('Driver revision: %s\n", temp.c_str());
temp = pldentity->Vendor;

printf ('Driver vendor: %s\n", temp.c_str());
temp = pldentity->Description;

printf ('Driver description: %s\n", temp.c_str());

//
// Setup VISA resource descriptor: a real address or an IVl logical name e.g.
// string strResourceDesc = "VTEXSwitchTarget";
//
string strResourceDesc = "TCPIP::10.1.0.56::INSTR";
string strDriverOptions = "Simulate=false, QuerylnstrStatus=True, DriverSetup=
slots=(1 = boeing_smdp_ex7000), IndividualRelayMode=True";
RFSwitching->Initialize(strResourceDesc,
true, // 1dQuery
false, // Reset
strDriverOptions);
//
// llviDriverldentity properties - Initialize required
//
temp = pldentity->GroupCapabilities;
printf (“'Supported 1VI group capabilities: %s\n", temp.c_str());
temp = pldentity->InstrumentModel;
printf ("Instrument model: %s\n", temp.c_str());
temp = pldentity->InstrumentFirmwareRevision;
printf ("Instrument firmware revision: %s\n', temp.c_str());
temp = pldentity->InstrumentManufacturer;
printf ("Instrument manufacturer: %s\n", temp.c_str()):;
temp = pldentity->SupportedlnstrumentModels;
printf (“'Supported instrument models: %s\n", temp.c_str());
VTEX Switch Driver Programmer’s Manual 31

VTI Instruments Corp.

L1111 177777777777777777/777777/777777/7/777///777/////77/////////////7/////7/777/
// Insert the actual application code here. Some example code follows
//
temp = pSpecific->ListOfChannels;
printf (“'Defined channels : %s\n",temp.c_str());
temp = pSpecific->ListOfAttenuators;
printf (‘'Defined attenuators: %s\n', temp.c_str());
temp = pSpecific->ListOfParallellOs;
printf (“'Defined parallel 10s: %s\n", temp.c_str());

LibSwitchAttenuators™* pAttenuator = RFSwitching->InstrumentSpecific->Attenuators;
LibSwitchParallel 10s* pParallel = RFSwitching->InstrumentSpecific->ParallellOs;

pParallel->1tem("'BAND_LED'")->Data = Ox2A;
unsigned int data= pParallel->1tem("'BAND_LED'")->Data;
printf (‘"\nRead back data from BAND_LED: Ox%x\n', data);

pAttenuator->1tem("'AT1'")->Setting = 10.0;
double setting = pAttenuator->ltem(*'AT1")->Setting;
printf ("Attenuator 1 setting is: %f\n", setting);

pSpecific->CloseRelays ("K1_3, K1_5, K1_6");

pSpecific->0OpenRelays ('K1_2, K1_3, K1_4");

//

//

/1111777777 ///7///7///7///////////7/////////////////7////////////////////////777

// Check instrument for errors
long IErrorNumber = -1;

string bstrErrorMessage;
printf ('\n");

while (IErrorNumber != 0)

RFSwitching->Utility->ErrorQuery(&lErrorNumber, bstrErrorMessage);
printf (“ErrorQuery: %d, %s\n", IErrorNumber, bstrErrorMessage.c_str());

T
T
//
// This catch block will intercept errors returned from the driver while it is
// operating.
//
catch (VTEXException& errorl)
{
printf("Exception: %s\n', errorl.errorMessage.c_str());
3

if (RFSwitching != NULL && RFSwitching->Initialized)

// Close driver
RFSwitching->Close();

3
delete(RFSwitching);
by
//
// This catch block will intercept errors returned while trying to instantiate the
// driver itself.
//

catch (VTEXException& error2)

printf(""Exception: %s\n", error2.errorMessage.c_str());

b
printf(""\nDone - Press Enter to Exit™);
getchar(Q);
return O;
3
32 VTEX Switch Driver Programmer’s Manual

www.vtiinstruments.com

Using Relays

This example demonstrates how to use SPST relay cards using the switch driver. This example
connects and disconnects the first two of SPST cards using two different methods.

// This is the main project file for Visual C++ application project generated using an
Application Wizard.

/ *Requirements
1. A EX1200 mainframe with DMM
2. A discrete switching card such as the EX1200-5001 or -5002.
Setup.-
1. IP address of the EX1200 mainframe is 10.30.1.11 in this example. The IP address must be
changed in the program if the EX1200 mainframe has a different address.
2. Discrete Switching card is in the slot No:2. This can be confirmed in SFP.
IT not, change the 2! in the Switch->Path->Connect to the appropriate slot number
3. This example uses IVl switch drivers, which can be downloaded from
http://www.vtiinstruments.com/Downloads.aspx

Description:
This example demonstrates how to use SPST relay cards using switch drivers. This example
connects and disconnect first two relays of an SPST card using two different methods.

*/

#include "stdafx.h"

#using <mscorlib.dll>

#import "lviDriverTypeLib.dIl" no_namespace
#import "VTEXSwitch.dll'" no_namespace

using namespace System;

int _tmain(Q)
{
::Colnitialize(NULL); //Start the COM layer
/*Instantiate a pointer to the driver in a try/catch block so that the instrument fails
gracefully if the driver is not found in the COM registry.*/

try

IVTEXSwitchPtr Switch(__uuidof(VTEXSwitch));
/*Perform an Initialization using a try/catch block so that our test code doesn"t run if
the instrument fails to initialize.*/

try

{
/*Here, the driver is given an empty options string. The option string may be
given option. Note that the Reset bit is set to provide a “clean start”.*/
Switch->Initialize("TCPIP::10.30.1.11:: INSTR",VARIANT_TRUE,VARIANT_TRUE, "'*);

Switch->Path->DisconnectAll();// Disconnects all the switches

//Next, the first channel and second channel of the switch are closed using the
Connect method.

Switch->Path->Connect(*'2!CH_1COM", "2ICH_1NO");
Switch->Path->Connect(*'21CH_2COM™", "2ICH_2NO");

Sleep(2000);

//Individual channels can be disconnected using Disconnect method.
Switch->Path->Disconnect("'21CH_1COM"™, "2ICH_1NO");
Switch->Path->Disconnect(*'21CH_2COM™, *"2ICH_2NO");

Sleep(2000);

//Now we are going to close the channels using alternate, Setpath method.
//Creates a path given a PathList of comma separated channel pairs.

//However, for Individual SPST (Form-A) switch cards closing a relay, and closing
a single path means the same.

//Hence, the "Connect" and "'SetPath" function will yield the same results.
Switch->Path->SetPath(*'21CH_1COM->21CH_1NO");
Switch->Path->SetPath(*'21CH_2COM->21CH_2NO");

Sleep(2000);

VTEX Switch Driver Programmer’s Manual 33

VTI Instruments Corp.

//channels can be disconnected once at all using DisconnectAll method.

Switch->Path->DisconnectAll();

//Close the initialized session
Switch->Close();

catch(_com_error &e)

{

: :MessageBox(NULL, e.Description(), e.ErrorMessage(), MB_ICONERROR);

3
3
catch(...)
/*This will catch any error the program generated.*/

//Handle the errors

}

34

VTEX Switch Driver Programmer’s Manual

